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Abstract—Aggregate traffic loads and topology in multi-hop
wireless networks may vary slowly, permitting MAC protocols to
‘learn’ how to spatially coordinate and adapt contention patterns.
Such an approach could reduce contention, leading to better
throughput. To that end we propose a family of MAC scheduling
algorithms and its general conditions, if satisfied, ensurelattice-
throughput-optimality (i.e., achieving any rate-point on a uni-
form discrete-lattice within the throughput-region). Thi s general
framework for lattice-throughput-optimality allows us to design
MAC protocols which meets various objectives and conditions.
In this paper, as instances of such a lattice-throughput-optimal
family, we propose distributed, synchronous contention-based
scheduling algorithms under graph and physical interference
model that (i) is lattice-throughput-optimal, (ii) does not require
node location information, and (iii) has a signaling complexity
that does not depend on network size. Thus, it is amenable
to simple implementation, and is robust to network dynamics
such as topology and load changes. Further, we propose a
heuristic, which belongs to the proposed throughput-optimal
family, for achieving faster convergence, leading to a better
transient throughput.

I. I NTRODUCTION

A. Motivation and Overview

Since the seminal work [2] on throughput maximization,
there has been growing interest in distributed MAC scheduling
algorithms withprovablethroughput-guarantees over wireless
multi-hop networks. The problem is to find a “throughput-
optimal” algorithm, i.e., a link scheduling algorithm thatsta-
bilizes the system whenever possible, subject to the constraints
on the sets of simultaneously schedulable links. Research on
distributed algorithms is crucial in wireless multi-hop networks
due to difficulty in having a centralized coordinator. Recent
advances on this area propose various types of algorithms:
maximal/greedy scheduling (e.g., [3–7]), pick-and-compare
scheduling (e.g., [8, 9]), and random access scheduling (e.g.,
[10, 11]).

In this paper, our objective is to develop distributed, syn-
chronous contention-based scheduling algorithms for both
graph-based and physical interference model (i.e., path-loss
based interference with a minimum SIR requirement for
successful packet decoding at receivers) that:(i) is lattice-
throughput-optimal,(ii) does not require node location/explicit
path-loss information, and(iii) has a signaling complexity that
does not depend on network size. Thus, it is amenable to
simple implementation, and is robust to network dynamics
such as topology and load changes. Our work is motivated
by the following:
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(a) Achieving low control overhead.In a distributed imple-
mentation of link scheduling with throughput-guarantees,con-
trol overheads are unavoidable, since nodes need to exchange
control messages to choose a “good” schedule over time-
slots and achieve provable throughput-guarantees. Clearly, low
control overhead is of great importance for both ease of
implementation and higher throughput, particularly in wireless
multi-hop networks with limited bandwidth resources.

(b) ’Universality’ for interference models.Existing al-
gorithms to date have mostly targeted a particular set of
graph-based interference models. In a more realistic model,
one would identify interference relationships based on SINR
(Signal-to-Interference-Noise-Ratio), considering “aggregate”
interference. There is little work onthroughput-optimalalgo-
rithms under this physical interference model. The graph in-
terference model enables us to leverage well-developed graph
theoretic results. The physical interference model reflects more
realism, but the complex interference coupling and aggregate
interference becomes an impediment to development of a
distributed scheduling algorithm with a provable throughput-
guarantee. Since both models (graph-based and physical inter-
ference) have their proponents, it would be useful to develop a
unified scheduling framework, which allows the development
of throughput-optimal distributed scheduling algorithmsfor
both models.

In this paper, we first propose a MAC scheduling frame-
work and associated conditions, which, if satisfied, ensure
lattice-throughput-optimality,i.e., achieve any rate-point on
a discrete-lattice (which can be made arbitrarily fine by a
suitable choice of parameters) within the throughput-region,
irrespective of underlying interference model. Next, as an
instance of the proposed family of lattice-throughput-optimal
algorithms, we develop a synchronized contention based al-
gorithm, RCAMA (Randomized Contention Aware Multiple
Access), which only requires very simple contention sig-
naling on each time-slot. Further, RCAMA operates in a
“dynamic” manner, i.e., schedules (determined in a distributed
manner) are initially not necessarily conflict-free, but each
node progressively adapts its schedule and converges to an
optimal conflict-free schedule (see Figure 1). Our approachto
contention signaling enables each node to ‘learn’ its neigh-
borhood’s contention patterns in an autonomous manner and
adapt to changes in traffic load and network topology.

Note that under the physical interference model, acentral-
ized schedulingalgorithm requires exact topology knowledge
(i.e., node locations, path-loss coefficients and network con-
nectivity) to achieve throughput-optimality – this information
is needed to compute the amount of interference generated
by simultaneously activated nodes, which in-turn is needed
for computing the optimal schedule. However, somewhat sur-
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prisingly, the proposed distributed algorithm achieves lattice-
throughput-optimalitywithout centralized geographical infor-
mation. To the best of our knowledge, this paper is the
first to propose a distributed, throughput-optimal scheduling
algorithm under the physical interference model.

We focus on a random access approach that uses memory of
past (local) schedules in order to provide a higher throughput-
guarantee than the algorithms described in current literature
(we refer to Section I-B for additional discussion). “Random
access” has been popularly implemented in a practical network
due to its ease of deployment. In this paper, we assume that
a node has explicit knowledge of itslocal (long-term) offered
load (i.e., offered load on each of its outgoing links). We
are able to prove that this extra local-information at nodes
leads to a distributed, lattice-throughput-optimal algorithm
that requires only three and two stages of simple contention
signaling under the physical and graph interference models,
respectively, irrespective of network size.

In practice, depending on the types of services supported
by the network, information on the offered load can either be
explicitly given to the nodes or be measured by the nodes.
If we have a guaranteed-service network based on a resource
reservation signaling (e.g., RSVP [12]), the amount of load
could be known a priori by nodes in the path of a reserved
flow. However, in a typical best-effort service network, the
amount of load is not explicitly provided to the nodes, but
the nodes could measure/estimate offered load over a suitable
time-period. The main motivation for RCAMA is that although
individual (end-to-end) traffic loads may change quickly, the
aggregates on some congested links may, in many relevant
applications, change more slowly and locally. Similarly, node
mobility (that leads to changes in topology and load) might
be slow enough to permit a MAC scheduler to learn and
exploit the offered traffic characteristics so as to quickly
realize “good” schedules. Because the loads may exhibit some
variation, or measurements may be noisy, a node may use an
upper estimate for it.

Our scheduling framework and the proposed algorithms can
be applied to both physical and graph interference model
with slight modifications. However, scheduling problems are
generally more challenging in the physical model due to the
impact of interference generated by far-field transmissions.
Thus, we focus on the physical model in this paper, and we
refer the readers to our technical report [13] for graph based
interference models.

B. Related Work

Scheduling achieving maximum throughput dates back to
the work [2] by Tassiulas and Ephremides, where the authors
show thatmax-weightscheduling proves to maximize through-
put in constrained queueing systems. Max-weight scheduling
essentially corresponds to a maximum weight independent set
problem, which is known to be NP-hard, and thus requiring
significant overhead.Maximal/greedy scheduling(e.g., [3–
5, 7]) has been proposed with the objective of polynomial-
complexity overhead, however at the cost of a reduced
throughput-region. The work in [10, 11] employs random
access approach, where transmission attempt probability is

decided based on the queue lengths of interfering links and just
requires constant overheads with throughput-regions close to
that of maximal/greedy scheduling. In this spirit (i.e., queue-
length based access probability selection), related work also
includes [14]. Research efforts, called apick-and-compare
approach have been developed to achieve the maximum
throughput with polynomial complexity motivated by the work
in [15]. The pick-and-compare based algorithms [8, 9, 16] are
essentially an “infrequent” computation of the max-weight
schedule, such that complexity on each time-slot is divided
into multiple time-slots [17, 18]. Thus pick-and-compare algo-
rithms reduce (average) complexity without loss of throughput,
but incurs exponentially large delay.

Note that all related work that we have surveyed so far
does not make explicit use of the offered load (i.e., statistics
of the load over any link in the topology). This indicates
that scheduling algorithms, which are unaware of arrival rate,
pay significantly large cost in terms of control overhead
or delay. As mentioned earlier, in this paper we propose
an algorithm with a small knowledge of local offered load
can significantly reduce control overhead as well as achieve
large throughput-region. Most importantly, unlike much of
the earlier work (which are predominantly for graph-based
interference models), the current approach works for physical
interference models as well.

We conclude this subsection with a brief survey of related
work to scheduling under the physical interference model
(these alorithms however have a different objective from that
in this paper). The work of [19–21] develops a mathematical
programming formulation for minimizing the frame size over
a TDMA wireless multi-hop networks, and proposes a dis-
tributed heuristic [19, 20] that considers only closest interferers
and a centralized heuristic which is used as a benchmark [21].
The authors in [22] define the “scheduling complexity,” i.e.,
minimum amount of time required until every link is scheduled
at least once, which is studied in an asymptotic manner. In [23,
24], the authors have focused only on computing maximum
throughput under the physical interference model by jointly
considering routing, MAC scheduling, and power control in an
optimization framework, but no practical, throughput-optimal,
distributed algorithm is presented.

C. Main Contributions and Organization

The main contributions of this paper are as follows:

(i) We first propose a scheduling framework (DRS: Dynamic
Randomized Scheduling), that achieves any rate-point on
a uniform discrete-lattice within the throughput region
(i.e., lattice-throughput-optimal). To that end, we give
two general conditions, which, if satisfied, ensure that
an algorithm in the DRS family is lattice-throughput-
optimal, and we further study their rate of convergence.

(ii) Next, as an instance of the DRS family, we propose a
synchronous contention-based algorithm, RCAMA-MAX
(Randomized Contention-Aware Multiple Access-MAX),
where multi-stage contention signaling in conjunction
with randomized time-slot selection is used. We prove
lattice-throughput-optimality of RCAMA, by showing
that RCAMA satisfies the two conditions in (i). The key
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ideas are summarized as a priority-based slot access with
preemption and persistence properties. In spite of lattice-
throughput-optimality of RCAMA-MAX for general net-
work topologies, it may not be hard to be practically
be implemented due to its large power consumption in
signaling. We propose a practical alternative, RCAMA-
VIR, whose signaling power consumption is significantly
smaller than that of RCAMA-MAX, but achieves lattice-
throughput-optimality for many practical network topolo-
gies in wireless multi-hop networks.

(iii) We propose an adaptive variation of RCAMA, AR-
CAMA (Adaptive RCAMA), which again satisfies the
two conditions in(i) and adaptively biases slot selection
probabilities based on the past contention histories. We
show via simulation that only a short duration of memory
is required to increase performance, resulting in good
adaptation to load/topology changes.

The rest of this paper is organized as follows: We begin with
a description of the system model, notations, and definitions
in Section II. Next, in Section III, we define the DRS algo-
rithm family, and present two general conditions for a DRS
algorithm to be lattice-throughput-optimal. In Sections IV and
V, we propose RCAMA as an instance of such a lattice-
throughput-optimal family. Finally, in Section VII, we validate
our results using simulations.

II. SYSTEM MODEL, NOTATIONS, AND DEFINITIONS

A. System Model

We assume that time is slotted. A time-slot duration is
suitably chosen to accommodate the transmission of one fixed-
size packet. We model the wireless multi-hop network by a
graphG(L,V), whereL andV denote a set of directed links
and nodes, respectively. We assume that for any link between
two nodes there is a counter-part in the opposite direction.We
denote a directed link from nodei to nodej by i→j. For
concreteness, the wireless system under study has asingle
frequency/code and each node is time-synchronized and has a
half-duplex radio.

We assume a fixed power model, where a transmitter uses
the power P for data transmission, and SINR (Signal-to-
Interference-Noise Radio) is considered to determine success
or failure of a transmission.

A message fromi to j is decodable,if

GijP

ηj +
∑

k∈VI (i) GkjP
≥ γ, (1)

whereVI(i) is the set of nodes transmitting simultaneously
with i on a given time-slot,Gij is the propagation loss from
i to j, and ηj is the thermal noise power atj. The SINR
thresholdγ depends on the desired bit rate, bit error rate, and
design parameters such as modulation, coding, and so on.

In practice, in addition to interference, wireless links are
prone to errors due to many other factors (e.g., fading). This
leads to high packet loss rate detrimental to upper-layer perfor-
mance. Thus, in many MAC protocols, reliability is provided
by acknowledging transmissions and possibly retransmitting.
Thus, we say that a transmission overi→j is successful, if
both thedata message fromi to j and the correspondingack

message fromj to i are decodable atj and i, respectively,
where the ack message fromj will be sent only when the
data message is decodable ati.

B. Lattice-Throughput-Optimality: Notation and Definitions

Definition II.1. A link schedule ~A = (Al ∈ {0, 1} : l =
1, . . . , |L|), Al, whereAl = 1 if the link l is scheduled for
attempted transmission, and 0 otherwise.

A link schedule ~A is said to besuccessful, if the trans-
missions scheduled by~A are successful when they occur
simultaneously. We denote the collection of allsuccessfullink
schedules byA.

Definition II.2. We define thethroughput regionΛ by:

Λ =

{

~α | ~α =
∑

~Ai∈A

βi
~Ai, 0 ≤ βi ≤ 1,

|A|
∑

i=1

βi = 1

}

.

Definition II.3. For any fixed positive integerF, we define
the F -lattice-throughput regionΛF by:

ΛF =

{

~α|~α=
∑

~Ai∈A

βi
~Ai, βi=

ki

F
,

|A|
∑

i=1

ki=F, ki∈{0,...,F}
}

.

Intuitively, ΛF is the lattice-sampling ofΛ with adja-
cent points having a distance of1/F. Note that Λ =
CL(∪F=1,...,∞ΛF ), whereCL(Z) is the closure of a setZ.

A scheduling algorithmΠ chooses a sequence of link
schedules (which are not necessarily successful),( ~A[s] : s =
0, 1, . . .), where ~A[s] is the link schedule on time-slots.

Definition II.4. For a fixedF, the offered load~ρ is said to be
F -lattice-feasibleif ~ρ ∈ ΛF . A scheduling algorithmΠ is said
to beF -lattice-throughput-optimal, if Π stabilizes the system
for any F -lattice-feasible load.

For a F -lattice-feasible load~ρ, by multiplying the offered
load by F, we henceforth deal with positive integer-valued
load,~θ ∈ Z |L|

+ , i.e.,θl corresponds to the number of requested
time-slots over linkl out of F time-slots. We call a group of
F time-slotsa framethroughout this paper.

In our framework, the lattice-parameterF is a system-
wide parameter that is known to every node in the network
a-priori. Thus, throughout this paper, we implicitly assume
that the lattice-parameter, denoted byF, is fixed. Further,
for simplicity, we use the terms “throughput-optimal” and
“feasible” to refer to “F -lattice-throughput-optimal” and “F -
lattice-feasible,” respectively, unless explicitly needed.

III. D YNAMIC RANDOMIZED SCHEDULING: CONDITIONS

FOR THROUGHPUT-OPTIMALITY

In this paper, we consider “frame-based” scheduling algo-
rithms, where scheduling patterns are determined on a frame-
by-frame basis (i.e.,F time-slots)1, and we will see that it is
sufficient to consider such class of algorithms.

Definition III.1. We define aframe schedule(FS) to be a
consecutive sequence ofF link schedules, i.e., an|L| × F

1Thus, we henceforth use a term ‘time-slots’ to refer to thes-th time-
slot inside a frame. We typically use ‘s’ and ‘t’ to refer to the indexes of a
time-slot and a frame, respectively.
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matrix, C(F, ~θ) = (cls : l = 1, . . . , |L|, s = 1, . . . , F ), where
cls = 1 if a transmission is scheduled over linkl on time slot
s, and0 otherwise. Further, thel-th row vector ofC(F, ~θ), is
said to be aslot scheduleover l. A FSC(F, ~θ) is said to be
feasible, if all of F link schedules (column vectors) inC(F, ~θ)
are successful.

As mentioned in Section I, we assume that a node has
knowledge only of the local offered load (i.e., arrival rate) on
each of its outgoing links. Thus, for alll ∈ L, θl =

∑F
s=1 cls,

i.e., the number of scheduled time-slots on each link is equal
to the load offered on that link.

Definition III.2. We additionally define atransmission prior-
ity, R = (rls : l = 1, . . . , |L|, s = 1, . . . , F ) whererls = 1
(rls = 0) if cls = 1 and its priority is high (low), and NULL
otherwise (cls = 0).

In this paper, we consider the following class of frame-
scheduling algorithms:

Definition III.3. A dynamic randomized scheduling (DRS)
algorithm randomly chooses a sequence of(C[t], R[t] : t =
0, 1, . . .) over frames, whereC[t] and R[t] are the FS and
the transmission priority at framet, respectively. A randomly
chosen(C[t], R[t]) at frame t may depend on FSs of the
previous, saym, frames. In this case we say that a DRS
algorithm has historym. Note that in a DRS algorithm without
priority, R[t] is not in use.

Remark III.1. It is clear that ~θ is F -lattice-feasible, if and
only if there exists a feasible frame scheduleC(F, ~θ), by
Definition II.3. Our objective in this paper is to develop a DRS
scheduling algorithm whichfinds a feasible frame schedule
within a finite number of frames, and sustains the schedule
thereafter, for any given feasible load.It can be easily seen that
a DRS algorithm satisfying such properties achieves lattice-
throughput-optimality. Thus, it suffices to consider the family
of DRS algorithms.

Now, we derive two conditions, which, if met, ensure that
a DRS algorithm is throughput-optimal We first define a
“distance” between two FSs (under the same topology and
load),C = (cls) andC′ = (c′ls), to be:

D(C, C′) =

|L|
∑

l=1

θl −
|L|
∑

l=1

F
∑

s=1

cls × c′ls. (2)

Note thatD(C, C′) = 0 implies C = C′.

Definition III.4. For a given fixed load and topology, let the
current frame to beti.

1) Finite Sustenance Condition (FSC). If C[ti] is feasible,
C[t] = C[ti], w.p. 1∀t > ti.

2) Finite Improvement Condition (FIC). If C[ti] is not
feasible, for any feasible FSC?, there is at < ∞ (not
dependent onC?), such thatD(C[ti], C

?) > D(C[ti +
t], C?) with positive probability.

The finite sustenance condition means that if a FS converges
to a feasible one, it has to be sustained thereafter. The finite
improvement condition is such that before converging to a

1 2 ...... ...... F

Frame

i F-1

Stage 1

RTS CTS Data

Stage m

randomly
adapt

randomly
adapt

FS FS FS FS FS FS FS....... ....... ........................ .......

same schedules same schedules

load/topology
changes

load/topology
changes

converged optimal
schedule

converged optimal
schedule

time-slot

AckRTS CTS

Fig. 1. Frame and slot structure of RCAMA

feasible FS, a sequence of FSs over frames tend to be pro-
gressively “closer” to a feasible FS with positive probability.

Subject to these two conditions, we have the following
theorem:

Theorem III.1. For any fixed feasible offered load and topol-
ogy, consider a DRS algorithmΠ which satisfies the finite
improvement and sustenance conditions. We have that

1) Π converges to a feasible FS, and thusΠ is throughput-
optimal.

2) Let τΠ(C) be the convergence time ofΠ to a feasible
FS for a given initial frame scheduleC. Then,∀t ∈ Z+,
there exist constants0 < KΠ < ∞ and 0 < pΠ < 1,

such that Pr
{

τΠ(C) > tKΠ

}

≤ pt
Π.

The sketch of proof is as follows: First, it is easily seen
that a sequence of FSs over frames forms a Markov chain.
Then, the finite improvement condition implies that we can
construct a converging path to a feasible FS (say,C?) within
a finite time, sinceD(C, C?) is upper-bounded. The complete
proof is presented in the Appendix.

The finite sustenance and improvement conditions described
above enable us to verify throughput-optimality of an instance
of the DRS family. In addition, it allows customization or
enhancement of an algorithm with its throughput-optimality
maintained, as long as the modified version satisfies those
conditions. In this paper, we develop a “base-line” DRS
algorithm with history 1. We later discuss how such base-
line algorithms with history 1 can be extended to adaptive
versions with multiple frame histories for better adaptation to
load/topology changes and faster convergence to the optimal
schedule in Section VI.

IV. RCAMA: OVERVIEW AND PER-FRAME OPERATION

A. Overview

The general frame and time-slot structure of RCAMA are
shown in Figure 1. A time-slot is divided into two parts: time
for contention signaling and time for data and ack transmission
(TX)2. We will describe RCAMA by dividing its behavior
into two different time-scales:(i) per-frame operation, where
each node randomly determines the slot-schedules for the TXs
over its adjacent outgoing links, and(ii) per-slot operation,
where a node initiates a RTS/CTS-like contention signaling

2For notational simplicity, we use the term ‘TX’ to refer to the word
‘transmission’ throughout this paper.
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to resolve contentions and implicitlylearn contention patterns
in the neighborhood. In this section, we describe only per-
frame operation, and per-slot operations will be discussedin
Sections V.

The RCAMA is designed to ensure the following two
properties:

1) Persistence: A successful TX at a given time-slot at
the current frame persists on the same slot at the next
frame.

2) Preemption: An unsuccessful TX can preempt a time-
slot (with positive probability) used by a persistent
successful TX.

As discussed earlier, it suffices to show that the system
convergesto a feasible FS to achieve throughput-optimality.
By the persistence property, once the system reaches a “good”
(i.e., feasible) FS, it stays in that FS. Preemption property
ensures that there is no deterministic “winner-loser” relation-
ships among TXs, and enables the system to avoid deadlocks,
i.e., being stuck in a “bad” FS. These two properties ensure
that the system will visit arbitrary FSs, and finally reach a
feasible FS, which is sustained thereafter. We satisfy these
two properties by assigning priority to scheduled TXs. More
specifically, by assigning high priority to unsuccessful TXs
and low priority to persistent successful TXs, respectively, we
allow a newly scheduled unsuccessful TX on a time-slot to
beat existing successful ones.

In addition to provable throughput-optimality, by using a
low-cost contention signaling (i.e., message complexity does
not depend on network size), the algorithm can adapt to
load and topology changes by “learning” local contention
patterns. In other words, RCAMA does not need any explicit
mechanism to inform the nodes of such network changes,
and it automatically avoids the situation where multiple time-
slots are commonly accessed by interfering links. Further,
application of non-uniform time-slot access probability for
unsuccessful TXs enable the system to learn local contention
levels, and to distribute scheduled TXs at different time-slots
in a more efficient manner (see Section VI).

We note that a similar idea of using multiple priorities was
introduced in Z-MAC [25]. However, Z-MAC considers only
the graph-based interference model, and its major objective
of multiple priorities is to solve the hidden terminal problem
with no provable throughput-guarantee, whereas we use two-
level priority to get both provable convergence and throughput-
guarantee.

B. Per-Frame Operation: Randomized Slot-Selection

When each frame starts, each node (say,v ∈ V) determines
the slot-schedules and contention priorities for the TXs over
its adjacent outgoing links. To do this, the following simple
rules are used:

Rule IV.1 (Slot and Priority Selection Rule).
(i) A successful TX on time-slots at framet− 1 persists on

the same time-slots at frame t, with priority set to be
low.

(ii) If a TX was unsuccessful at framet − 1, a time-slot is
randomly selected from the time-slots not already taken
in (i), and its priority is set to behigh.

1,Hl1

l2

l3

frame t-1 frame t

0,H

0,L

0,L

1,H

0,L

L

1      2     3       4      5      6      7      81      2      3      4      5      6      7      8

L

HH

H

H

1/0  :   transmission success/failure
H/L :   high/low priority

frame size = 8 slots

outgoing links of a node: l1, l2, l3 

θl1  = 3 θl2  = 2 θl3  = 1

Fig. 2. Example of Rule IV.1: Since at framet−1, the TX overl1 on time-
slot ‘1’ and overl2 on time-slot ‘4’ were successful, these TXs are scheduled
once again withlow contention priority at the same time-slot positions at
frame t. For the unsuccessful TXs overl1 on time-slots ‘2’ and ‘3’, we
randomly choose two time-slots of the remaining time-slots, which were not
taken by previously successful TXs (i.e., the node does not consider time-slots
‘1’ and ‘4’ in this random selection). In the example, time-slot ‘2’ and ‘7’
are selected, and they are scheduled withhigh contention priority.

on a time-slot s and at frame t

High (H)

stage 1 valid high (H1
V) invalid high (H1

I )

Low (M)

valid high (H2
V) invalid high (H2

I ) valid low (M2
V) invalid low (M2

I )stage 2

stage 3 valid and invalid high (H3
V) valid low (M3

V)

contention signaling

contention signaling

contention signaling (power adjustment for H2
F)

data transmissions occur

invalid low (M3
I )

Fig. 3. Three-stage contention signaling in RCAMA under thephysical
interference model

Rule IV.1(i) corresponds to thepersistenceproperty.Pre-
emption property is satisfied by Rule IV.1(ii) in conjunction
with the proposed multi-stage signaling in Section V. An
example of Rule IV.1 is given in Figure 2.

V. PER-SLOT OPERATION: PHYSICAL INTERFERENCE

MODEL

A. Basic Algorithm

Following the slot-schedules as explained in Section IV-B,
on each time-slot, nodes use the three-stage (synchronized)
RTS/CTS contention signaling mechanism to resolve con-
tentions, and data/ack TXs follow (see Figure 3 for a rep-
resentative, pictorial algorithm description).

Definition V.1. A scheduled TX overi→j is said to bevalid,
if j decodes the RTS fromi, and i decodes the CTS fromj.

Note that in our three-stage signaling, the validity of a TX
does not imply success of the TX, i.e., even if RTS/CTS are
decoded, the data TX or ack reception can fail. For this reason,
we differentiate betweenvalidity andsuccessof a TX.

We denote byH (resp.M) a set of links scheduled (on
a given time-slot and frame) with high (resp. low) priority,
H,M ⊂ L. At each stage, contention signaling is conducted
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for high and/or low priority TXs. We use the notationsHi
V and

Hi
I to refer to valid and invalid high priority TXs at stagei,

respectively. Similarly,Mi
V andMi

I are used for low priority
TXs.

(i) Stage 1: Contention signaling is performed for
only the TXs inH, based on whichH1

V and H1
I are deter-

mined (note thatH1
V ∪ H1

I = H). The three-stage contention
signaling is constructed to ensure that data TXsoccurover the
links inH1

V , irrespective of the results of the subsequent stages
2 and 3.However, their success is not guaranteed, because TXs
in H1

V could fail if their actual data/ack TXs occur together
with TXs inM.

We will later show that it suffices to guarantee the success
of all TXs in H1

V on each time-slot for throughput-optimality
(see Theorem V.1). Thus, the objective of subsequent stages
2 and 3 is to ensure the success of TXs inH1

V .
(ii) Stage 2: Contention signaling is performed for

the TXs inH1
V and the TXs inM, based on whichH2

V , H2
I

M2
V , andM2

I are determined. Note thatH2
V ∪H2

I = H1
V , and

M2
V ∪ M2

I = M. The role of this stage is to identify high
priority TXs in H1

V , which fail due to interference from low
priority TXs, i.e., identifyH2

I .
(iii) Stage 3: Contention signaling is performed again for

the TXs inH1
V and only for the TXs inM2

V . Recall that our
preemption property for throughput-optimality is intended to
ensure the success of high priority TXs inH1

V . The objective
of Stage 3 is to invalidate low priority TXs, which can cause
the TXs inH2

I to fail (note that TXs inH2
V will be successful

even with interference by low priority TXs). To that end, we
employsignaling power adjustmentin RTS/CTS signaling for
TXs of H2

I , i.e., the transmitters and the receivers inH2
I adjust

their signaling powers appropriately, such that interfering low
priority TXs are invalidated.

(iv) Data/ack TXs: Data TXs occur for TXs inH1
V and

TXs in M3
V . ACK messages are sent back to the transmitters

by the receivers which can decode data.
An example of the three-stage contention signaling in

RCAMA is exemplified in Figure 4. It shows how it operates
and converges to a feasible FS.

We note that transmission power control for signaling,
which is similar to signaling power adjustment in this paper,
has been proposed with the main objective of throughput im-
provement (see [26] and references therein). The approaches in
[26], however, do not consider the physical interference model
and they do not provide a study of provable performance
guarantees (i.e., no throughput-optimal properties).

B. Signaling Power Adjustment and Throughput-Optimality

The remaining question is how to compute the adjusted
powers for TXs inH2

I in an efficient, distributed manner,
which we will discuss in this section.

We will use the notationH2
I(s)[t] to explicitly refer toH2

I

on the time-slots at framet. We first let ~PA
s [t] = ( ~P r, ~P c)s[t],

~P r = (P r
l ), ~P c = (P c

l ), l ∈ H2
I(s)[t] be the adjusted signaling

power vector on time-slots and framet at stage 3, where~P r

and ~P c corresponds to the powers for sending RTS and CTS
messages, respectively.
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Assumptions:
1. RTS(A,B) and RTS(C,E)
    --> RTS(A,B) fails
2. RTS(A,B) and RTS(D,F)
    --> RTS(A,B) fails
3. CTS(B,A) and CTS(E,C)
    --> both succeed
4. CTS(B,A) and CTS(D,F)
    --> both succeed

(d) no priority & no power-adjustment (e) two priorities & power adjustment

frame 0 frame 1 frame 2

(a) (b) (c) 

beat

Fig. 4. Example of RCAMA: In absence of contention priority and signaling
power adjustment, TX overA→B keeps failing with either choice of time-
slot ‘1’ or ‘2’, since RTS fromA is not decodable atB due to interference
from eitherC or D, over frames. However, in RCAMA, from Rule IV.1, the
unsuccessful TX overA→B at frame ‘0’ is assigned high priority at frame
‘1,’ and due to stages 2 and 3,B adjusts the power for its CTS (destined to
A and broadcast toD), such that CTS fromF is not decodable atD (see the
frame 1 in (b)). The same procedure can be applied when TXs over A→B
and C→E are assigned high and low on a same time-slot, respectively.By
this procedure, the system ultimately converges to a feasible FS.

Definition V.2. For any fixed topology and load, consider
a sequence of adjusted signaling power vectors,(~PA

s [t] :
s = 1, . . . , F, t = 0, 1, . . . , ). RCAMA is said to satisfyHigh
Priority Condition (HPC)with (~PA

s [t]), if with ~PA
s [t], all the

TXs inH1
V (s)[t] are successful, over any time-slot and frame.

As described in Section IV-A, Definition V.2 corresponds to
a condition ensuring that “good” high priority TXs (i.e., valid
TXs at stage 1) are successful. Now, Theorem V.1 implies that
it suffices to guarantee the success of TXs inH1

V by using
sufficiently large adjusted power in stage 3 for throughput-
optimality of RCAMA. Recall thatH1

V = H2
V ∪H2

I , and TXs
in H2

V are guaranteed to be successful even with interference
by low priority TXs.

Theorem V.1. For any given fixed topology and load, suppose
that RCAMA satisfies HPC with(~PA

s [t]), then

1) RCAMA satisfies the finite sustenance and improvement
conditions. Thus, by Theorem III.1, it is throughput-
optimal. .

2) RCAMA satisfies HPC withany( ~QA
s [t]), where~QA

s [t] ≥
~PA

s [t], s = 1, . . . , F, t = 0, 1, . . . , in element-wise.

This result enables us to develop the following simple,
distributed throughput-optimal algorithm:

RCAMA-MAX: All the signaling power adjustment (i.e.,
~PA

s [t]) are set to bePmax, where Pmax is the amount of
signaling power, such that signaling withPmax in a TX
invalidatesall other simultaneously scheduled TXs.

The assumption thatPmax exists is reasonable for wireless
multi-hop networks deployed of a finite size. The following
immediate corollary follows:

Corollary V.1 (RCAMA-MAX) . For any fixed topology
and feasible load, RCAMA-MAX satisfies HPC, and thus is
throughput-optimal.

Remark V.1. Note that under the physical interference model,
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Fig. 5. Example of RCAMA-VIR: we have one high priority andN low
priority TXs scheduled on a same time-slot. The high priority TX is clearly
valid at stage 1. At stage 2, suppose that at stage 2 an RTS overA→B
is not decodable due to the aggregate interference of RTSs from Ci to Di,
i = 1, . . . , N. Now, B assumes that its RTS decoding failure is due to a
single virtual low priority TX. By estimating such aggregate interference,B
computes the distance from itself toC′ (the virtual transmitter). In the CTS-
slot of stage 3, B sets the sufficiently large CTS power to invalidate a CTS
from D′ (the virtual receiver ofC′), based on the “worst-case” assumption
that there does not exist a signal power path-loss betweenC′ andD′.

a centralized algorithm needs information on node locations
and network connectivity to achieve throughput-optimality.
Surprisingly, however, Corollary V.1 implies that there exists a
distributed throughput-optimal scheduling algorithm that does
not need such centralized topology information.

In spite of the provable throughput-optimality and the fully
distributed nature of RCAMA-MAX, it may not be a practical
algorithm, since for a large-scale multi-hop network,Pmax

should be very large. This is not a desirable feature leadingto
low efficiency of energy utilization and poor transient through-
put. In other words, with RCAMA-MAX, every low priority
TXs will fail, and only high priority TXs surviving stage 1
will succeed. The main observation behind this limitation of
RCAMA-MAX is that we need to consider the “worst-case,”
i.e., the case when a large number of far field low priority
TXs interfere with a high priority TX (which was valid at
stage 1). However, it is known that interference is dominated
by a small number of nearby transmissions mainly due to non-
linear signal power loss. Using this observation, in the next
section, we propose a new distributed algorithm, RCAMA-
VIR, which uses far lower powers thanPmax, but still guar-
antees throughput-optimality under reasonable assumptions.

C. RCAMA-VIR

The main idea in RCAMA-VIR is to use a sufficiently high
power (but not as large asPmax in Stage 3 signaling), such that
low priority interferers ofH2

I can be suppressed. This is done
by estimating (and developing bounds) on the interference
power.

In this section, we assume the following:(i) A receiver
can only measure the total received signal power (the desired
signal power plus interference) and know a boolean result
about the target SINR (i.e., the target SINR is larger than
the thresholdγ or not)3; (ii) the propagation loss is modeled
by Gij = 1/d(i, j)α(i,j), whered(i, j) is the distance between
nodesi andj, andα(i, j) is an “effective” path loss exponent
(which may depend on the node-pair), for which each node
knows (lower and upper) bounds (i.e.,α ≤ α(i, j) ≤ ᾱ); (iii)

3Note that we do not assume that the receiver is able to know theexact
SINR value as well as individual or even aggregate pure interference generated
by other transmissions.

the system is interference-limited4.
The transmitters(l) and the receiverd(l) of link l ∈ H2

I

perform the following procedures:

RCAMA-VIR:
1) d(l) (s(l)) estimates the aggregate interference gen-

erated by low priority TXs during RTS (CTS) slot,
and assumes that such interference is caused by the
transmitter (receiver) of a singlevirtual low priority TX.
(see Section V-D for discussion on estimation of the
aggregate interference).

2) d(l) (s(l)) computes an upper-bound on the distance to
the transmitter (the receiver) of the virtual TX. This
upper-bound is computed based on the bounds on the
path loss exponent (i.e.,α ≤ α ≤ ᾱ), and the interfer-
ence estimation in (i).

3) By assuming that there is no power path-loss between
the virtual transmitter and receiver,d(l) (s(l)) computes
the adjusted CTS (RTS) power, required to invalidate
the virtual TX.

An example of RCAMA-VIR is shown in Figure 5. Note
that RCAMA-VIR may not be throughput-optimal, when many
far field low priority transmissions are interfering a high pri-
ority transmission. However, we will show that RCAMA-VIR
achieves throughput-optimality under reasonable assumptions
(see Theorem V.2).

D. Estimation of Interference

Note that the major difference between Stages 1 and 2 is
the existence of low priority TXs. Thus, it is intuitive to use
measurement of the total received signal powers at Stages 1
and 2 and using their differences to estimate the interference
by low priority TXs.

Consider a TXl ∈ H2
I . We denote byR̂1

d(l) (resp.Ĉ1
s(l)),

the total received signal power on RTS (resp. CTS) slots at
Stage 1 byd(l) (resp.s(l)). Similarly, we use the notations
R̂2

d(l) and Ĉ2
s(l), at Stage 2. We also letIr

d(l) and Ic
s(l) be

the exact aggregate low priority interferenceto d(l) ands(l).
To estimate the interference by low priority transmitters and
receivers, we use the values defined in the following:Îr

d(l) ,

R̂2
d(l) − R̂1

d(l) and similarly,Îc
s(l) , Ĉ2

s(l) − Ĉ1
s(l).

Using the above method for estimation, we have

Îr
d(l) ≤ Ir

d(l), Îc
s(l) ≤ Ic

s(l), (3)

since we have

Îr
d(l) = R̂2

l −R̂1
l

= R̂2
l (H1

V )+R̂2
l (M)−(R̂2

l (H1
V )+R̂2

l (H1
I))

= R̂2
l (M)−R̂2

l (H1
I)≤Ir

d(l) (∵R̂2
l (M)=Ir

d(l)), (4)

where R̂i
l(A) corresponds to the total received power by a

receiver of linkl from RTS TXs inA during stagei. Similarly,
we also have that̂Ic

s(l)≤Ic
s(l).

4In this system, the link operates at a sufficiently highγ (SINR threshold),
so that the effect of thermal noise is negligible as comparedto the interference.
However, this can be readily extended to the more general assumption that
0 ≤ ηj ≤ ε× (interference), whereε is the ratio of thermal noise to the total
interference.
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In other words, our estimation is a lower-bound on the
exact interference by low priority TXs. This lower-bound
in the interference estimation and the bounds on the path
loss exponent lead to an upper-bound on the distance to the
transmitter/receiver of the virtual TX, which is used in the
proof of throughput-optimality of RCAMA-VIR.

Theorem V.2 (RCAMA-VIR) . Suppose that there exists
a maximum distance of interference between nodes and a
maximum number of interferers, denoted bydint and Nint,
respectively. If2α

√
Nint(dint)

ᾱ/(2α) ≤ dmin, wheredmin is the
minimum distance between two nodes, then RCAMA-VIR sat-
isfies HPC. Thus, it is throughput-optimal from Theorem V.1.

Theorem V.2 implies that if the inter-node distance is
sufficiently large, i.e., node density in a plane is not too high
and nodes are distributed in a sufficiently uniform manner,
throughput-optimality is provably guaranteed in RCAMA-
VIR. The proof is presented in Appendix.

Numerical Example V.1. As a numerical example, consider
the case whendint = 2× dmin (a typical setting in the IEEE
802.11 DCF by assuming that transmission rage is set to be
dmin) for different values of bounds on path-loss exponents
and Nint, given by:

dmin ≥ 2.5 m if ᾱ = α = 3, Nint = 2,
dmin ≥ 4 m if ᾱ = α = 4, Nint = 16,
dmin ≥ 8 m if ᾱ = 4, α = 3, Nint = 4.

As discussed earlier, due to non-linear path-loss exponents, the
number of interferers affecting other simultaneously scheduled
TXs seems to be quite limited, i.e.,Nint is small, where we
have more relaxed condition ondmin, which still gives a
provable guarantee on performance.

VI. ARCAMA (A DAPTIVE RCAMA)

Note that RCAMA chooses new time-slots for unsuccessful
TXs with equal probability in the subsequent frames. In fact,
one can potentially increase the rate of convergence or adapt to
load changes more effectively by intelligently guessing which
time-slot is likely to be successful and by biasing the time-slot
access probability. As an example, a time-slot with consecutive
success is highly likely to be “safe”, so that it would be
beneficial to sustain the corresponding time-slot with higher
probability at the next frame than other time-slots. In this
section, we propose a general family of variations of DCAMA,
ARCAMA (Adaptive RCAMA) family (a subset of the DRS
family), which adaptively assigns different time-slot access
probabilities, depending on the past contention history. This
provides ARCAMA with a more efficient learning of local
contention patterns, leading to more robustness to network
changes. As shown in Proposition VI.1 below, such variations
of RCAMA inherit all throughput-optimal properties.

To that end, each link is assigned its ownslot weight vector,
and the individual nodes maintain slot weight vectors for its
adjacent outgoing links. This slot weight vector is updated
every frame, mainly based on the TX results (success or
failure) at the past frames. To increase/decrease the slot weight
vector, we define thetime-slot status, which corresponds to the
result of past TXs on the corresponding time-slots. Then, the

TABLE I
WEIGHT INCREASE/DECREASE, Sl

s[t]: SLOT STATUS OVER LINKl ON SLOT
s AT FRAME t

S
l
s[t − 3] S

l
s[t − 2] S

l
s[t − 1] Weight Inc/Dec

SUCC SUCC SUCC −D1

FAIL/IDLE SUCC SUCC −D2

FAIL FAIL FAIL +I1

SUCC/IDLE FAIL FAIL +I2

slot access probability is set to beinversely proportionalto the
current weight. This biased probability is used for selecting
time-slots for unsuccessful TXs. Also, by setting a minimum
and maximum for each weight, we can avoid pathological
cases (e.g., the time-slot access probability could be arbitrarily
small or close to ‘1’), i.e., there exist̄w and w, such that
1 ≤ w < w̄ < ∞ and∀s ∈ {1, 2, . . . , F}, ∀l ∈ L, and∀t > 0,
w ≤ wl

s[t] ≤ w̄, where we denote the slot weight vector of
link l at framet by ~wl[t] = (wl

s[t] : s = 1. · · · , F, ).

Proposition VI.1. For any fixed topology and feasible load
and any positive integerm < ∞, in ARCAMA with history
m, Theorems V.1 and V.2. still hold.

We skip the proof for brevity, since it is analogous to those
for RCAMA.

VII. S IMULATIONS

In this section, we evaluate the performance of the RCAMA
and ARCAMA by comparing them to the base-line RAN-
DOM algorithm. The RANDOM algorithm determines slot-
schedules (based on the requested loads) in a purely random
manner at each frame, and uses a single-level RTS/CTS sig-
naling to gain access to the channel. We choose the RANDOM
algorithm as a base-line, since it is similar to Aloha-like
strategy (a “standard” algorithm for link scheduling), and
behaves like a slotted version of a CSMA-like contention-
based scheme.

Weight maintenance algorithm.We use a simple weight
maintenance algorithm based on three frame contention history
in ARCAMA, where we increase (decrease) a weight more
aggressively for back-to-back failures (successes) on a slot
over the past three frames. We expect to see even better
performance increase when more sophisticated maintenance
algorithms are used. The intuition for these choices is that
more back-to-back successes at a time slot indicate that the
offered loads around the corresponding node at that time-slot
are relatively low (i.e., less “congested”), and transmissions in
that time-slot are likely to be successful in the future. Similar
intuition is applied for back-to-back failures. We have three
kinds of time-slot status: SUCC (FAIL), where a transmission
occurs and are successful (unsuccessful), and IDLE otherwise.
Table I shows the (additive) increase/decrease parametersto
adapt slot weights based on the past three transmission result
histories, respectively. The parameters are chosen such that
D1 > D2 > 0, andI2 > I1 > 0. We have usedD1 = I1 = 3,
D2 = I2 = 1, in all simulation results, where the maximum
and minimum weights (i.e.,̄w andw) are set to 30 and 1.

A. Physical Interference Model

Simulation environment. We simulate wireless multi-hop
networks with nodes which are randomly distributed in a
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1000× 1000 meter-square area. Thermal noise power at each
receiver (i.e.,ηj), the minimum required SINR level (i.e.,γ),
and the transmit power level (i.e.,P ) are set to be -90 dBm, 18
dB, and 15 dBm, respectively. The frame size is 10 time-slots.

Different signaling power adjustment schemes. First, we
investigate the effect of different signaling power adjustment
schemes on the throughput performance and energy consump-
tion at the “steady” state (i.e., no load or topology changes
for some time).

Figure 6(a) shows the network topology and link con-
nectivity generated at random using the parameters above.
Figure 6(b) shows a trace of the used powers for different
RCAMA versions. Figure 6(c) shows the performance of
RCAMA and ARCAMA algorithms for a normalized load
by a randomly chosen maximally feasible load5, which varies
from 50% to 100%. We measure the aggregate normalized
throughput for every varying load over 3000 frames. Each
point in the graph is the mean value of 50 simulation exper-
iments with different random seed values. In the simulation
results, (A)RCAMA-NOR represents the (A)RCAMA without
signaling power adjustment at stage 3. Similarly, Figure 6(d)
shows the aggregate average power used in contention sig-
naling per one successful transmission for different values of
normalized load. With both simulation results, we observe that
the algorithms without power adjustment.

From these simulation results, we observe the following:
(i) ARCAMA has better transient throughput than RCAMA,
(ii) With both ARCAMA and RCAMA, the algorithm with-
out power adjustment has greater transient throughput than
other throughput-optimal versions with power adjustment (i.e.,
(A)RCAMA-VIR and (A)RCAMA-MAX), as well as better
energy saving.

Note that, in practice, we may need lower powers than
those used by RCAMA-VIR, and the condition ondmin in
Theorem V.2 can be relaxed. This is because RCAMA-VIR
is conservatively designed again by considering the point-of-
view from onesingle high priority TX and other low priority
TXs for the probable throughput-optimality. In other words,
we have not considered the fact that other high priority TXs,
which were valid at stage 1, also generate interference to
interfering low priority TXs, and interference among low-
priority TXs still exists. In fact, as seen above from the sim-
ulation results , RCAMA with no signaling power adjustment
has a better (transient) performance than RCAMA-MAX and
RCAMA-VIR even if it is not provably throughput-optimal.
Essentially, overall higher performance than RANDOM is
due to accessing the channel withtwo-level priority, which
significantly reduces contentions.

Adaptation to load changes. In this simulation, we investi-
gate the effect of network changes in load on the performance
of RCAMA-NOR and ARCAMA-NOR algorithm, again for
the network topology in Figure 6(a). We generate time-varying
loads by a random walk model, where we first determine
a normalized offered load of 60% by a randomly chosen
maximally feasible load. Then, at the beginning of each frame
we randomly chooseLch links and increase their link loads

5A load is said to bemaximally feasibleif the resulting system load becomes
infeasible withany load increase anywhere in the network.

by one slot with probabilityPI , decrease their link loads with
probability PD, or stay at the current load (i.e., no change)
with probability1−PI−PD. For simplicity, in the simulation,
we setP̂ , PI = PD. Thus, higher values of̂P corresponds
to a faster load change with time. Then, the mean load change
time (MLCT) overLch links is 1/(2P̂ ) frames.

Figure 7(a) shows an example trace of throughput (i.e.,
number of successful transmission slots) for MLCT= 25
frames andLch = 5, where we observe that ARCAMA
algorithm tracks the actual load very well, resulting in nice
adaptation to time-varying load changes. Figure 7(b) shows
that the throughput (over 50000 frames) normalized by the
actual (time-varying) offered load for different values of
MLCTs (Lch = 1) varying from 25 to 100 frames, where the
error bars represent the maximum and minimum values of 10
simulations with different random seed values (i.e., different
load changing patterns). For a network with a link capacity
of 10 Mbps, and a frame-size of 10 (which corresponds to a
10 msec frame duration), this corresponds to a load change
ranging from once every 250 msec to once every 1 seconds.
We observe that with ARCAMA algorithm, the normalized
throughput is above 90%, whereas the RANDOM achieves
about 60%.

APPENDIX

We first observe that Rule IV.1 satisfies the Property VII.1.
It basically says that any TX scheduled at some slots could
be re-scheduled with positive probability. In particular,for a
successful TX, probability that the same time-slot is chosen
is ‘1.’ We will use this property in the proof of throughput-
optimality of RCAMA algorithm in Section V-B.

Property VII.1. For any time-slots, and link l, there exists
a positive probability thatcls[t − 1] = cls[t], irrespective of
cl′s′ [t − 1], l′ 6= l, s′ 6= s.

B. Proof of Theorem III.1

Proof of Theorem III.1(i): From Remark III.1, for the
proof of throughput-optimality, we will show that the system
“converges” to a feasible frame schedule. For a DRS algorithm
with historym, it is easily seen that a sequence of(C[t], R[t])
over frames forms a Markov chain, by defining a system state
as

Xm[t] ,
(

(C[t − m + 1], R[t− m + 1]), · · · , (C[t], R[t])
)

,

and we letC[n] = R[n] = 0, when n < 0, for the initial
conditions.

Then, from the standard Markov chain theory and the finite
sustenance condition, it suffices to show that fromany state
Xm[0], where C[0] is infeasible, we can construct a finite
sequence of times0 = ti < t2 < . . . < tn < ∞, such that
C[tn] in Xm[tn] is feasible.

Suppose thatC[ti] in Xm[ti] is infeasible (otherwise, the re-
sult immediately follows). Choose any feasible frame schedule
C?. Then, at frameti+1 < ∞, we have the following two-
cases with positive probability: (a) from the finite improvement
condition,D(C[ti+1], C

?) < D(C[ti], C
?), or (b) C[ti+1] is

feasible (i.e.,D(C[ti+1] = C??), C?? 6= C?). First, if (b) is
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true, the result immediately follows. Second, if (a) is true,
we are also done, sinceD(C[0], C?) is upper-bounded by
∑|L|

l=1 θl. This completes the proof.

Proof of Theorem III.1(ii): Let nθ =
∑|L|

l=1 θl be the total
number of loads. We first note that the total number of frame
schedules andnθ are fixed, the number of frames to decrease
the distance from a certain infeasible schedule to a feasible
schedule (i.e.,t in Definition III.4) is uniformly bounded by a
finite number of frames, and depends only on the scheduling
algorithm, which we denote byTΠ. For simplicity, we useT
to refer toTΠ here in this proof.

Recall that the proof of Theorem III.1(i) implies that for the
current framei, we have

Pr
{

D(C[i + T ], C?) = D(C[i], C?) − 1
}

≥ (1/F )Tnθ ,

i.e., over an interval of two frames, with at least probability
q = (1/F )Tnθ , D(C[i], C?) decreases by 1, since in the worst
cast, each transmission was unsuccessful, and a time-slot is
randomly chosen for each transmission with probability1/F,
and we navenθ number of scheduled transmissions, and this
happens over two frames.

This also implies that with at least probability of
qD(C[0],C?), the system will converge toC? within T ×
D(C[0], C?) frames. Note that convergence to a feasible
schedule (possibly different fromC?) could occur much
earlier, since there could be multiple feasible frame schedules.

Further, note that forany frame scheduleC, we have

D(C, C?) ≥ nθ.

Thus, we have for any frame scheduleC, we have∀C ∈
C, ∀C? ∈ C? (whereC and C? is the set of all possible and
feasible frame schedules, respectively),

Pr
{

τ(C) ≤ Tnθ

}

≥ Pr
{

τ(C) ≤ TD(C, C?)
}

≥ qD(C,C?) ≥ qnθ .

Now, let us study the evolution of the frame schedule at
frames{0, Tnθ, 2Tnθ, · · · }. Observe that at any frameT t ·nθ

it will converge to a feasible frame schedule within up to frame
T (t+1) ·Tnθ with probability at leastqn2

θ . This immediately
provides a exponential upper bound on the convergence rate,
i.e., ∀C ∈ C,

Pr
{

τ(C) > tTnθ

}

≤ (1 − qn2

θ )t.

By letting p = 1 − qn2

θ , andK = Tnθ, the result follows.

C. Proof of Theorem V.1

Proof of Theorem V.1(i): First, we will prove the finite
sustenance condition. Note that from Rule IV.1, the time-slots
for the scheduled TXs that were successful are sustained in the
same position at the next frame. Clearly, if all the scheduled
TXs were successful (i.e., C[t] reaches a feasible FS), then
the frame schedule at the current frame would be same as that
at the previous frame. Thus, the finite sustenance conditionis
satisfied. In what follows, we focus on the proof of the finite
improvement condition.

Let the current frame bet, and choose an arbitrary feasible
FS C?. Since C[t] is not feasible (otherwise the result im-
mediately follows), there exists some linkl, such that the TX
overl on some time-slots is not successful at this framet. Let
us denote the set of such “unsatisfied links” byLu[t]. Also,
denote byLg[t] the set of links with “good” position w.r.t.
C?, i.e., the set of links whose slot schedules (i.e., row vector
of a FS) are equal to those inC? 6. We first choose such an
l ∈ Lu \ Lg if Lu \ Lg 6= ∅, and choosel ∈ Lg otherwise.
Case 1: l ∈ Lu \ Lg. In this case, we again consider two
sub-cases based on whetherc?

ls = 0 or 1 (i.e., whether the

6For notational simplicity, we henceforth omit the frame index, [t], in Lg[t]
andLu[t], unless explicitly needed.
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unsuccessful TX overl on time-slot s is scheduledC? or
not).

(i) c?
ls = 0. Since l /∈ Lg, there is a slots′ 6= s, such that

c?
ls′ = 1 andcls′ [t] = 0. Note that the slot schedules ofl

in C[t] andC? must have the same number of 1’s. Now
from Property VII.1, there is a positive probability that
at framet + 1 we haveC[t + 1], such that the scheduled
transmission overl on slots at framet is movedto slot
s′, and all other scheduled transmissions at framet + 1
are scheduled at the same slots as at framet. Then, we
haveD(C[t + 1], C?) = D(C[t], C?) − 1.

(ii) c?
ls = 1. We first letL′

s denote the set of scheduled links
on s by C[t], but not byC?, i.e., L′

s = {i ∈ L | cis =
1, c?

is = 0}.
Then, again there are two sub-cases:(a) there exists a
unsuccessful linkl′ ∈ L′

s, l′ 6= l, or (b) all the scheduled
links in L′

s are successful ons.

(a): Similar to (i), we can move the unsuccessful TX
over l′ on s to a time-slots′ 6= s, on which a TX is
scheduled byC?), sinceL′

s ∩ Lg = ∅. Then, we have
D(C[t + 1], C?) = D(C[t], C?) − 1.

(b): In this sub-case, we first have the following claim
(the proof will be presented later):

Claim VII.1. Suppose that we choose a FS at frame
t, such thatC[t + 1] = C[t] (which is possible from
Property VII.1), i.e.,D(C[t + 1], C?) = D(C[t], C?).
Then, there exists a linkl′ ∈ L′

s[t + 1], such that the
scheduled TX overl′ on s becomesunsuccessful.at frame
t + 1.

If Claim VII.1 is true, then, at the framet + 1, l′

corresponds toCase 1(i). Thus, after two frames from
t, we haveD(C[t + 2], C?) = D(C[t], C?) − 1.

Case 2: l ∈ Lg ⊂ Lu. Note that the fact we are in this
case implies that all the links inLu \ Lg are satisfied, since
we always choose first an unsatisfied link inLu \ Lg by
construction.

Then, using the same definition ofL′
s as that inCase 1(ii),

this case corresponds toCase 1(ii)(b), i.e., when all the links in
L′

s are successful on slots. Thus, again based on Claim VII.1,
with a positive probability we haveD(C[t + 2], C?) =
D(C[t], C?) − 1. This completes the proof. Now, it remains
to prove Claim VII.1.

Proof of Claim VII.1:By hypothesis (i.e.,Case 1(ii)(b)), all
the scheduled links ons are successful except forl. In other
words, all the links inLg ∪ L′

s[t] are successful except forl.
Note thatc?

ls = 1 and l ∈ Lu. This implies thatthe aggregate
interference by TXs over the links inLg that are scheduled on
s is not enough to make the TX overl on s unsuccessful, and
the TXs inL′

s[t] \ {l} necessarily contribute to the TX failure
over l.

Also, sinceC[t+1] = C[t] by assumption, all the scheduled
links ons except forl should have low priority at framet+1.
Then, HPC condition implies that the high priority valid TX
at stage 1 (in fact, the TX overl should be valid at stage 1)
is guaranteed to be successful, there must an unsuccessful TX
over a link inL′

s[t] at framet + 1.

Proof of Theorem V.1(ii): It is clear that withany( ~QA
s [t]),

where ~QA
s [t] ≥ ~PA

s [t], s = 1, . . . , F, t = 0, 1, . . . , in element-
wise, more low priority TXs will be invalidated at stage
3. Note that irrespective of the signaling power adjustment
scheme, the set of high priority TXs which have data trans-
mission is fixed. Thus, RCAMA satisfies HPC with( ~QA

s [t]).
This completes the proof.

D. Proof of Theorem V.2

To prove that RCAMA-VIR satisfies HPC subject to the
condition ondmin, it suffices to show that for arbitrary high
priority TX in H2

F , its success is guaranteed. In this proof, we
consider the case of RTS-decoding failure of a high priority
TX in H2

F . Similar proof can be applied to the case of CTS-
decoding failure.

We consider a high priority TX over over the link fromA
to B, and a set of most dominantNint low priority TXs over
Ci→Di, i = 1, . . . , Nint. Note that we have more high and
low priority TXs in the network. Suppose that RTS fromA
to B fails due to the aggregate interference by RTSs from
Ci, i = 1, . . . , Nint. (see Figure 5 for a similar scenario with
only differences that more high and low priority TXs are in
the network andN is replaced byNint).

First, from (4) we have that

Îr
d(l) ≤ Ir

d(l). (5)

Note that the exact aggregate interference by RTS messages
from C1, . . . , CNint

is given by:

I l
r = P ×

Nint
∑

i=1

1

(yi)αi

, (6)

whereαi is the path loss exponent fromCi to B. Then, from
(5) and (6), we have

Îr
d(l) ≤ Ir

d(l) ≤ P ×
Nint
∑

i=1

1

(yi)α
. (7)

Now, lety′ = d(B, C′), which is computed byB as follows:

(y′)αv =
P

Îr
d(l)

≥ 1/

Nint
∑

i=1

1

(yi)α
, (8)

whereαv is the path loss exponent fromB to C′.
As described in the algorithm description,B assumes that

there is no signal power loss betweenC′ and D′. Based on
such assumption andy′, B will adjust its CTS message power
(denoted byP v

c ) enough to invalidate the CTS fromD′ to C′.
From (8), this is given by:

P

P v
c /(y′)αv

≤ γ ⇒ P v
c ≥ P (y′)αv

γ
≥ P

γ
∑Nint

i=1 1/(yi)α
(9)

Let the path loss exponent fromDi to Ci be βi. Then, the
SINR value atC′ for its CTS message fromD′ will be:

P/(zi)
βi

ZH + P v
c /(yi)αi

,

whereZH is the total received power atC′ by other high and
low priority TXs except for TXs overA→B andCi→Di, i =
1, . . . , Nint.
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Then, it suffices to show that withP v
c , all of Nint low

priority TXs over Ci→Di, i = 1, . . . , Nint are invalidated,
i,e.,

P/(zi)
βi

ZH + P v
c /(yi)αi

≤ P/(zi)
βi

P v
c /(yi)αi

=
P (yi)

αi

P v
c (zi)βi

≤ γ. (10)

Now, we have

P/(zi)
βi

ZH+P v
c /(yi)αi

≤ P (yi)
αi

P v
c (zi)βi

≤ P (dint)
αi

P v
c (dmin)βi

≤ P (dint)
ᾱ

P v
c (dmin)α

≤ γ(dint)
ᾱ
∑Nint

i=1 1/(yi)
α

(dmin)α
(from (9))

≤ γ
Nint(dint)

ᾱ

(dmin)2α
. (11)

Thus, if 2α
√

Nint(dint)
ᾱ/(2α) ≤ dmin, we have

Nint(dint)
ᾱ

(dmin)2α
≤ 1.

Thus, (10) is proved, which completes the proof.
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